|   Electron Microscopy Solutions

    
Electron Microscopy Solutions

Image Gallery

989 images found   |   View all
Back  | 1 2 3 4 5 6 7 8 9 10  ...  | Next 

Product

SEM

TEM

DualBeam

FIB

Clay on quartz

Clay on quartz, with false colour

Courtesy of Dr. jim Buckman , Heriot-Watt University

Taken by SEM microscope

Detector: BSE
Vacuum: low vacuum

Platinum Oxide

SEM top view of a Platinum oxide film deposited by atomic layer deposition. PtO2 transforms locally to metallic Platinum. The Pt-area extends each cycle of the ALD process concentrically.

Courtesy of Diana Garcia-Alonso

Taken by DualBeam microscope

Magnification: 500x
Sample: Platinum oxide on silicon oxide
Detector: SE
Voltage: 5 kV
Horizontal Field Width: 256 microns
Working Distance: 4.7 mm
Spot: 1.6 nA

Dandelions

Hybrid inorganic/polymer based photovoltaic nanodevices offer the promise of low cost large area conversion of solar energy to electricity. Nanostructures of zinc oxide have shown supreme capabilities in emerging technologies ranging from solar energy harvesting to biosensing. However, the ability to control the size and position of these nanostructures is crucial for fabricating nanodevices with remarkable properties and astonishing solar energy conversion efficiencies. Herein, we present a collection of scanning electron micrographs of zinc oxide nanostructures prepared by low temperature hydrothermal methods Image taken and Processed by Luisa Whittaker PhD.

Courtesy of Gerald Poirier

Taken by Quanta SEM microscope

Magnification: 25000x
Sample: ZnO nano wires
Detector: SE
Voltage: 15Kev
Vacuum: -5 torr
Working Distance: 10mm
Spot: 3

Black or White

STEM imaging for yeast (High angle annular Dark field=Black). TEM imaging for yeast (Bright field=White). Samples preparation was done by HPF & FS.

Courtesy of Mr. TZU-HAN HSU , Academia sinica

Taken by Tecnai microscope

Magnification: 2550x
Sample: Yeast
Voltage: 120kV
Spot: 3.0

Biofilm

Biofilm on carbon steel after immersion in seawater for 14 days.

Courtesy of FRANCISCO RANGEL

Taken by Quanta SEM microscope

Magnification: 8,984X
Detector: Mix: SE + BSE
Voltage: 10 kV
Vacuum: 1.13e-5 mbar
Horizontal Field Width: 33.2 μm
Working Distance: 10 mm
Spot: 3.5 nA

Cross-section of a TSV Array

Cross-section of a TSV Array.

Courtesy of Sematech

Taken by Vion Plasma microscope

Magnification: 2000 x
Sample: silicon
Horizontal Field Width: 128 μm
Working Distance: 16.5 mm

Ebola virus 5

Cryo TEM of Ebola virus

Courtesy of Daniel Beniac

Taken by Tecnai microscope

Magnification: 6,000
Detector: CCD
Voltage: 200 kV

Unfilled TSV Corner Cross Section

A cross-section mill pattern of 60 x 100 μm is used to expose the deeper regions of the TSV (1.3 μA, 8 minutes) and a cleaning cross-section mill is used to polish the face for viewing (60 nA, 5 minutes)

Courtesy of FEI

Taken by Vion Plasma microscope

Sample: silicon
Detector: CDEM
Horizontal Field Width: 171 μm
Working Distance: 16.5 mm

Something wrong in blood

Crystals formation inside blood vessels in vivo. Initial stage of a thrombus formation.

Courtesy of Dr. Antonietta Gatti , Nanodiagnostics

Taken by Quanta SEM microscope

Magnification: 543
Sample: blood vessel
Detector: BSE
Voltage: 20
Vacuum: 0.80
Horizontal Field Width: 0.55
Working Distance: 10
Spot: 4.0

Zircon ZrSiO4

The sample is zircon (ZrSiO4) doped with iron Fe at 0.05 wt%. This compound was prepared by control hydrolitic sol-gel route. The sample was heated at 1200oC during 3 h in air. This compound has application as a ceramic pigment.

Courtesy of Guillermo Herrera

Taken by Quanta SEM microscope

Magnification: 3,500x
Sample: Zircon
Detector: SE
Voltage: 20
Vacuum: 1
Horizontal Field Width: 7.00 μm
Working Distance: 6.0
Spot: 5.0

ZnO Nanowire Cross Section

ZnO nanowire bundle in cross section, prepared by Helios FIB. ZnO supplied by Kathy Han from Oregon State University. Imaging and FIB work performed by Jeff Ditto at CAMCOR (University of Oregon).

Courtesy of Kurt Langworthy

Taken by Helios NanoLab microscope

Magnification: 20000x
Detector: TLD
Voltage: 2. kV
Horizontal Field Width: 5 μm
Working Distance: 4.0 mm

Urtica Dioica

Lower, stinging part of a "Urtica Dioica" Leaf.

Courtesy of Giantonio Toldo

Taken by Quanta SEM microscope

Magnification: 150

Shattered Honeycombs

This accidently happened during the application of a porous aluminium oxide membrane on a substrate. The membrane folded, cracked and formed several layers.

Courtesy of Mr. Joern Leuthold , Institute of Materials Physics, WWU Muenster

Taken by Nova NanoSEM microscope

Magnification: 30000x
Sample: Aluminium oxide
Detector: TLD
Voltage: 5 kV
Vacuum: 6E-6mbar
Horizontal Field Width: 10 µm
Working Distance: 4.8 mm
Spot: 3

Inverted Clementine Heart

Image of Clementine orange peel; courtesy of student Kristen O'Neill.

Courtesy of Alyssa Calabro

Taken by Quanta 3D microscope

Diatoms

Diatom cell

Courtesy of Ekaterina Nikitina

Taken by Quanta SEM microscope

Magnification: 6000x
Detector: ETD
Voltage: 20 kV
Horizontal Field Width: 20 μm
Working Distance: 14.8 mm

RICE

inside white rice

Courtesy of Mr. Wadah Mahmoud , The University of Jordan

Taken by Inspect microscope

Magnification: 10000
Sample: eating rice
Detector: SE
Voltage: 3.0 kV
Vacuum: high
Working Distance: 11.6
Spot: 3.0

E. coli bacteria - Escherichia coli

E. coli bacteria (Escherichia coli) is a common type of bacteria that can get into food, like beef and vegetables. Normally lives inside the intestines

Courtesy of Michal Rawski

Taken by Quanta 3D microscope

Magnification: 50,000x
Voltage: 30.00 kV
Horizontal Field Width: 2
Working Distance: 10.5 nm

Blood Cells

Blood cells from mouse kidney

Courtesy of Ken Bart

Taken by Quanta SEM microscope

Magnification: 15,000x
Sample: Blood
Detector: SE
Voltage: 15 kV
Vacuum: High Vacuum
Horizontal Field Width: 17 um
Working Distance: 4.7
Spot: 3

Mechanical Pencil Lead 0.7mm

The typical position when the fracture of the graphite occurs.

Courtesy of Francisco Rangel

Taken by Quanta SEM microscope

Magnification: 250x
Sample: Lead automatic pencil
Detector: Mix: SE + BSE
Voltage: 20 kV
Horizontal Field Width: 1188.2 μm
Working Distance: 44.2
Spot: 5.0

Polyimide Removal on a Package

Polyimide Removal on a Package

Courtesy of FEI

Taken by Vion Plasma microscope

Sample: silicon
Horizontal Field Width: 623 μm
Working Distance: 16.5 mm

Volcano eruption

During failure analysis of light emitting diode (LED), an awesome volcano-eruption-like image was captured. The vivid red lava is erupted from the powerful volcano.

Courtesy of En-Chiang Lin

Taken by Quanta 3D microscope

Magnification: 5000X
Horizontal Field Width: 80 um

Wave of salts

Salt particles scattered over a SiN substrate

Courtesy of Mr. Marien Bremmer , Leiden Institute of Physics

Taken by Tecnai microscope

Sample: SiN / Salt
Voltage: 200
Spot: 3.0

Ir nanoparticles on carbon xerogel microballs

Negativo de imagen HAADF de nanopartículas de Iridio depositadas sobre microesferas de xerogel de carbón. HAADF negative image of iridium deposited on carbon xerogel microballs.

Courtesy of Dr. María del Mar Abad Ortega , Universidad de Granada

Taken by Krios microscope

Magnification: 80000 X

Polystyrene Lamellar

Polystyrene lamellar structures composed of nanospheres. When dispersed on a solid substrate (in this case silicon) the multiple layers of polystyrene nanospheres can crack during drying, due to capillary forces.

Courtesy of Luca Boarino

Taken by Inspect microscope

Magnification: 100x
Sample: Polystyrene nanospheres on silicon
Detector: SE
Voltage: 5 kV
Vacuum: .3 mbar
Horizontal Field Width: 1 mm
Working Distance: 10 mm
Spot: 3.0 nA

Platinum Oxide Concentric Rings

SEM top view of a Platinum oxide film deposited by atomic layer deposition. PtO2 transforms locally to metallic Platinum. The Pt-area extends each cycle of the ALD process concentrically.

Courtesy of Adrie Mackus

Taken by DualBeam microscope

Magnification: 100x
Sample: Platinum oxide on silicon oxide
Detector: SE
Voltage: 5 kV
Horizontal Field Width: 1.28 mm
Working Distance: 4.7 mm
Spot: 1.6 nA