|   Electron Microscopy Solutions

    
Electron Microscopy Solutions
    

Image Gallery

1003 images found   |   View all
Back  | 1 2 3 4 5 6 7 8 9 10  ...  | Next 

Product

SEM

TEM

DualBeam

FIB

Night of the meteor

Gold sphere on a porous aluminum oxide membrane.

Courtesy of Joern Leuthold

Taken by Nova NanoSEM microscope

Magnification: 15000x
Sample: Gold on aluminum oxide
Detector: TLD
Voltage: 5kV
Vacuum: 10^-6mbar
Horizontal Field Width: 19.9µm
Working Distance: 5mm
Spot: 3

Carbon Nanofiber with Cu Diamond( Nano Necklace)

Necklace like carbon nanofiber is doped with cu crystals. but this images formed like looking like Nano-necklace.

Courtesy of Durga Prasad Muvva

Taken by Tecnai microscope

Magnification: 19000 x
Sample: Nano- Necklace
Detector: CCD
Voltage: 200 kV
Spot: 1

PFIB Section

PFIB section and image through wafer-to-wafer bond region, exposing 4 µm diameter interconnecting spheres.

Courtesy of Courtesy SINTEF

Taken by Vion Plasma microscope

Voltage: 30.00 kV
Horizontal Field Width: 17.1 μm / 51.2 μm

Gallium Phosphide

Pyramidal shape (ice cream like) of a GaP nanocolumn tipped by a spherical ball containing Ga + In metallic liquid. The metallic ball is coverd by a carbon nanomembrane. The structure was grown by the Metallorganic Chemical Vapours Phase Technique. The colors were obtained by mixing the signals of secondary and backscattered electrons. The mixing is performed using the software FEI Company.

Courtesy of FRANCISCO RANGEL

Taken by Quanta SEM microscope

Magnification: 50,000X
Detector: MIX: SE (channel 1) and BSE (channel 2)
Voltage: 10 kV
Vacuum: 1.63e-6 mbar
Horizontal Field Width: 5.97 μm
Working Distance: 10.0 mm
Spot: 2.0 nA

Flower Garden

Due to a hole in the top protection layer liquid reacted with the layer stack resulting in these beautiful "flowers"

Courtesy of Robbert Weemaes

Taken by Nova NanoSEM microscope

Magnification: 35000
Sample: semi conductor
Detector: TLD SE
Voltage: 5 kV
Horizontal Field Width: 7.31 um
Working Distance: 5.0 mm
Spot: 4.0

ZnO Nanoparticles

ZnO nanoparticles obtained by hydrothermal synthesis using microwave heating.

Courtesy of FRANCISCO RANGEL

Taken by Quanta SEM microscope

Magnification: 20000x
Sample: ZnO
Detector: LFD
Voltage: 20 kV
Vacuum: 80 Pa
Horizontal Field Width: 14.9 μm
Working Distance: 14.9 mm
Spot: 3.0 nA

IR lamp blown filament

A blown filament from an IR lamp is shown on the image. The melted area seen on the tip is where it burned and cracked while working. The rest of the filament, that is in a healthy state, is a perfect and beautiful double spiral geometry .

Courtesy of Mr. Marcos Rosado , Institut Catala de Nanociencia i Nanotecnologia

Taken by Quanta SEM microscope

Magnification: 160
Sample: IR lamp filament
Detector: SE + BSE
Voltage: 20 kV
Vacuum: 10e-4 Pa
Horizontal Field Width: 1.89 mm
Working Distance: 10 mm
Spot: 4.0

Iron Nodule

Iron nodule as egg shell filled with calcium carbonate

Courtesy of wadah mahmoud

Taken by Inspect microscope

Magnification: 4000x
Sample: soil
Detector: SE
Voltage: 5 kv
Working Distance: 10 mm
Spot: 5.0 nA

Sperm head

Head mid piece of a mouse sperm.

Courtesy of Gunther Wennemuth

Taken by Quanta SEM microscope

Magnification: 10000x
Sample: sperm cell, mouse
Detector: SE
Voltage: 5kV
Horizontal Field Width: 2 μm
Working Distance: 10.3
Spot: 3

ZnO Nanowire Cross Section

ZnO nanowire bundle in cross section, prepared by Helios FIB. ZnO supplied by Kathy Han from Oregon State University. Imaging and FIB work performed by Jeff Ditto at CAMCOR (University of Oregon).

Courtesy of Kurt Langworthy

Taken by Helios NanoLab microscope

Magnification: 20000x
Detector: TLD
Voltage: 2. kV
Horizontal Field Width: 5 μm
Working Distance: 4.0 mm

Copper Fibers

Copper fibers and fragments. Chemically precipitated.

Courtesy of wadah mahmoud

Taken by Inspect microscope

Magnification: 30,000x
Sample: copper thin wire
Detector: SE
Voltage: 10 kV
Working Distance: 13.4 mm
Spot: 2.5 nA

Novel Meso Phases Catalyst

Novel Meso Phases Vanadium pyrophosphate Catalyst can be used as Catalyst for selective oxidation of Hydrocarbons

Courtesy of Basant Kumar

Taken by Quanta SEM microscope

Magnification: 20,000x
Detector: SE
Voltage: 5.0 KV
Vacuum: 2 x 10 -7 Pa
Horizontal Field Width: 14.9 micron
Working Distance: 9.3 mm
Spot: 4.0 nA

Mitylus skeleton

Skeleton of a mytilus

Courtesy of Dr. Antonietta Gatti , Nanodiagnostics

Taken by Quanta SEM microscope

Magnification: 6,000x
Sample: mytilus
Detector: BSE
Voltage: 20
Vacuum: 0.61Torr
Horizontal Field Width: 49.73
Working Distance: 12.7
Spot: 3.8

wings made of colors

charging around a tungsten wire

Courtesy of Martina Dienstleder

Taken by DualBeam microscope

Sample: tungsten wire
Detector: ETD - SE
Voltage: 5kV
Horizontal Field Width: 1.12mm
Working Distance: 5.0mm

Gasoline Residue

Sample of gasoline residue

Courtesy of Vanessa Colombini

Taken by Quanta SEM microscope

Magnification: 3600x
Sample: gasoline residue
Detector: BSE
Voltage: 15kV
Vacuum: high vacuum
Horizontal Field Width: 30
Working Distance: 9,1 mm
Spot: 3,6 nA

Carbon Broccoli

Unusual carbon rods formed on carbon aerogel during conversion to graphite aerogel.

Courtesy of Dr. Clarissa Wisner , MS&T

Taken by Helios NanoLab microscope

Magnification: 2500x
Sample: Carbon
Detector: SEI
Voltage: 10 kV
Working Distance: 6.1

Nanostructured hydroxyapatite

Nanostructured hydroxyapatite powder with biopolymers. Microparticles formed by nanoparticles of hydroxyapatite crystals, with needle shape and stabilized with polymer surfactants, resulting in a structure similar to a blackberry. In the field of regenerative medicine, there is a great use of this biomaterial due to the similarity to the main inorganic constituent of natural bone and teeth. The synthetic hydroxyapatite has excellent biocompatibility and bioactivity to be used as a suitable bone substitute.

Courtesy of Izamir Resende

Taken by Quanta SEM microscope

Magnification: 200,000x
Sample: Hydroxyapatite
Detector: SE
Voltage: 20 kV
Vacuum: 0,0000325 mbar
Horizontal Field Width: 1.49 µm
Working Distance: 9.0
Spot: 1.0

Bouquet

The image is of gold coated fluorapatite grown on a protein coated PDMS substrate. This comes from a project which studies the enamel mineral formation. Enamel has a complex hierarchical structure which we would like to recreate.

Courtesy of Ms. Kseniya Shuturminska , Queen Mary University of London

Taken by Inspect microscope

Sample: Fluorapaptite on PDMS
Detector: SE
Voltage: 5 kV
Working Distance: 10
Spot: 2.5

The liliputien king ring

Diatome

Courtesy of Fabrice GASLAIN

Taken by Nova NanoSEM microscope

Magnification: 4000x
Sample: diatome
Detector: CBS
Voltage: 2 kV
Horizontal Field Width: 31.8 µm
Working Distance: 5.0 mm
Spot: 4.5

Catalyst Particles on ZnO Nanowires

Catalyst particles revealed on top of the ZnO nanowires with strong material contrast using the ICD detector at 2 kV Courtesy of Munster University, Germany Product: Verios SEM

Taken by Verios XHR SEM microscope

ZnO

Zinc Oxide.

Courtesy of Mr. FRANCISCO RANGEL , MCTI/INT

Taken by Quanta SEM microscope

Magnification: 5,000x
Sample: Zinc oxide
Detector: Mix: SE plus BSE.
Voltage: 20 kV
Horizontal Field Width: 59.7 µm
Working Distance: 14.8
Spot: 3.5

Breast Cancer Cell

breast cancer cell, fixed and dehydrated.

Courtesy of Wadah Mahmoud

Taken by Inspect microscope

Magnification: 5,000x
Sample: Cancer cells
Detector: SE
Voltage: 2 kV
Working Distance: 12.4 mm
Spot: 2.5 nA

Sea peanut

Marine phytoplancton

Courtesy of Philippe Crassous

Taken by Quanta SEM microscope

Magnification: 11000
Detector: SE
Voltage: 10
Vacuum: 10-4 mbar
Horizontal Field Width: 27.1µm
Working Distance: 9.9mm
Spot: 2.5

Albacar

Albacar - kind of filler using to increase strength of the pulp fibers

Courtesy of Azizi Abd. Jalil

Taken by Quanta SEM microscope

Magnification: 2000 x
Sample: Pulp fibers
Detector: LFD
Voltage: 12.50 kV
Vacuum: 600 mbar
Horizontal Field Width: 50 μm
Working Distance: 17.3 mm
Spot: 4.0 nA

Field Electron Emission Elements

The scanning electron microscopes (SEM)-image of field emitters, formed by focused ion beam milling. The diameter of each tip less than 100 nm.

Courtesy of Alexey Kolomiytsev

Taken by DualBeam microscope

Magnification: 57,947x
Detector: SE
Voltage: 10 kV
Vacuum: high vacuum
Horizontal Field Width: 4.42 μm
Working Distance: 5.1 mm
Spot: 3.0 nA