|   Electron Microscopy Solutions

      
Electron Microscopy Solutions
      

Image Gallery

1003 images found   |   View all
Back  | 1 2 3 4 5 6 7 8 9 10  ...  | Next 

Product

SEM

TEM

DualBeam

FIB

Red Cells With Nanoparticles

Mercury Chlorine nanoparticles are attached to human primary red cells

Courtesy of Antonietta Gatti

Taken by Quanta SEM microscope

Magnification: 30,000x
Sample: red cells
Detector: BSE
Voltage: 20.6 kV
Vacuum: 0.98 tor
Horizontal Field Width: 9.95 micron
Working Distance: 10
Spot: 3.6

Ceratium algae from river water

Ceratium algae filtered from river water

Courtesy of Dr. Louwrens Tiedt , North-West University, Potchefstroom Campus, Potchefstroom

Taken by Quanta SEM microscope

Magnification: 800X
Detector: SE
Voltage: 10 kV
Vacuum: 9.21e-6 mbar
Horizontal Field Width: 373µm
Working Distance: 8.2
Spot: 3.3

Compositional Map

Compositional map of the Ni based superalloy sample:  2D EDS multi-element compositional map of 512 × 512 pixels.  Acquired in <5min. Product: Talos TEM

Taken by Talos microscope

ZnO

Inter-growth crystals of zinc oxide

Courtesy of Dr. Alexander Kulak , School of Chemistry, University of Leeds

Taken by Nova NanoSEM microscope

Zircon ZrSiO4

The sample is zircon (ZrSiO4) doped with iron Fe at 0.05 wt%. This compound was prepared by control hydrolitic sol-gel route. The sample was heated at 1200oC during 3 h in air. This compound has application as a ceramic pigment.

Courtesy of Guillermo Herrera

Taken by Quanta SEM microscope

Magnification: 3,500x
Sample: Zircon
Detector: SE
Voltage: 20
Vacuum: 1
Horizontal Field Width: 7.00 μm
Working Distance: 6.0
Spot: 5.0

Crystal Ball

Zinc Oxide Crystals on carbon tape

Courtesy of Mrs. DUYGU OGUZ KILIC , Izmir Institute of Technology- Center for Materials Research

Taken by Quanta SEM microscope

Magnification: 50000x
Sample: Zinc Oxide
Detector: SE
Voltage: 5 kV
Vacuum: 2.5 e-4 Pa
Working Distance: 10.4mm
Spot: 3

human hair.

Female hair fiber.

Courtesy of Francisco Rangel

Taken by Quanta SEM microscope

Magnification: 4000x
Sample: hair fiber
Detector: Mix: SE + BSE
Voltage: 10 kV
Vacuum: 3.64e-3 Pa
Horizontal Field Width: 74.6 μm
Working Distance: 14.9
Spot: 3.5

Zeolites

Zeolites.

Courtesy of FRANCISCO RANGEL

Taken by Quanta SEM microscope

Magnification: 2331X
Detector: SE
Voltage: 10 kV
Vacuum: 1.09e-6 torr
Horizontal Field Width: 128 μm
Working Distance: 29.6 mm
Spot: 4.0 nA

Zinc Oxide Urchin

Urchin-like zinc oxide

Courtesy of Amal Al Ghaferi

Taken by Quanta SEM microscope

Magnification: 77315x
Sample: ZnO
Detector: SE
Voltage: 5 kV
Horizontal Field Width: 1.00 μm
Working Distance: 10.1
Spot: 2.5

Mountain Cedar Pollen

From December through February, many people experience an itchy, runny nose, sneezing, nasal blockage, excess tearing and itchy eyes.If you experience the above symptoms every year during these months, the chance is great that you have Mountain Cedar allergy. This conditions are mostly caused by this pollen.

Courtesy of Steve Hield

Taken by DualBeam microscope

Magnification: 80000x
Sample: Cedar Pollen caoted with Cr.
Detector: TDL
Voltage: 2kV
Horizontal Field Width: 4μm
Working Distance: 4.617mn
Spot: 5 nA

Bending Test

Microcrack after bending test, colored by Manuel Paller

Courtesy of Martina Dienstleder

Taken by DualBeam microscope

Sample: steel
Detector: ETD - SE
Voltage: 5 kV
Horizontal Field Width: 67µm
Working Distance: 6.0 mm

Nano-rack

ZnO-Nanostructures grown through each other.

Courtesy of Peter Heß

Taken by Nova NanoSEM microscope

Magnification: 20,000x
Detector: SE
Voltage: 3 kV
Vacuum: 0.0000277526 mbar
Horizontal Field Width: 15 μm
Working Distance: 4.9
Spot: 3

Utricularia Striatula Seed

Seed of Utricularia Striatula

Courtesy of Azizi Abd. Jalil

Taken by Quanta SEM microscope

Magnification: 400x
Detector: ETD
Voltage: 20k V
Vacuum: 60
Horizontal Field Width: 300μm
Working Distance: 22.4 mm
Spot: 5 nA

Palladium encapsulated in silicon oxide nanotubes

SEM images of palladium encapsulated in silicon oxide nanotubes were taken in a high vacuum mode using a mixed signal from SE and BSE detectors.

Courtesy of Dr. Svetlana Neretina , Temple University

Taken by Quanta SEM microscope

Magnification: 20,000x
Sample: palladium, silicon oxide nanotubes
Detector: SE and BSE
Voltage: 30 kV
Vacuum: high vacuum
Horizontal Field Width: 10.4 um
Working Distance: 8.7 mm

Association of cancer and myeloid cells

Immune surveillance by macrophages and monocytes is important for removing foreign invaders from the body, eliminating dead or damaged cells, and tissue homeostasis. Functional plasticity of macrophages enables them to respond to different stimuli, performing a variety of immune modulatory roles. During tumor development, macrophages are among the first immune cells to migrate into the tumor. Stimuli, including molecules secreted by cancer cells, polarize macrophages into various tumor-associated macrophage subpopulations. Factors secreted by macrophages include immunosuppressive cytokines, inflammatory chemokines, and phagocytosis molecules. Shown here are multiple macrophages (white) associating with a breast cancer cell (red). At the University of New Mexico, we are using nanotechnology to deliver agents that influence immune cells to actively participate in destroying tumor cells.

Courtesy of Dr. Rita Serda , University of New Mexico

Taken by Quanta 3D microscope

Magnification: 15000x
Sample: cells
Detector: SE
Voltage: 20 kV
Horizontal Field Width: 20 um
Working Distance: 10
Spot: 4.5

Ladybug Eggs

A: Ladybug eggs (45x), (top view) B: The same eggs after hatching (45x), (top view) C: Ladybug eggs (90x), (side view) D: The same eggs after hatching (90x), (side view)

Courtesy of Riccardo Antonelli

Taken by Quanta SEM microscope

Magnification: 45x - 90x
Sample: Ladybug eggs on leaf plum
Detector: LFD (Low vacuum)
Voltage: 10 kV
Vacuum: 0.974 torr
Horizontal Field Width: 3.34 mm - 1.66 mm
Working Distance: 10.6 mm
Spot: 5 nA

Pink Grapes

Encapsulation

Courtesy of Ms. MİNE BAHCECİ , İZTECH

Taken by Quanta SEM microscope

Magnification: 9000x
Detector: SE
Voltage: 3 kV
Working Distance: 10.0
Spot: 3.0

bouquet

Aggregation of Copper grains

Courtesy of Mr. Reza Abbaspour , Georgia Institute of Technology

Taken by FIB microscope

Volumetric diffraction

Selected Area Electron Diffraction of Au thin foil, with volumetric rendering based on luminance performed in CRISP (http://www.uma.es/sme/CRISP/).

Courtesy of Mr. Adolfo Martínez , Universidad de Málaga

Taken by TEM microscope

Light and shadow

Diamond ripples on the sidewall of a micro cutting tool fabricated by FIB.

Courtesy of Jining Sun

Taken by Quanta 3D microscope

Magnification: 15000
Sample: Diamond
Detector: SE
Voltage: 5 kV
Horizontal Field Width: 9.95 um
Working Distance: 9.9 mm
Spot: 4.5

Hyperelongated bacterium

Serratia liguefaciens, a Gram negative bacterium showing an abnormal hyperelongated form.

Courtesy of Dr. JOSE RAMOS VIVAS , IDIVAL

Taken by Inspect microscope

Magnification: 10.000x
Sample: gold
Detector: ETD
Voltage: 25kV
Vacuum: 3mbar
Horizontal Field Width: 29.8um
Working Distance: 8.5mm
Spot: 3.0

Galvanized Sheet Steel II

Corrosion product into a galvanized sheet steel after corrosion testing simulating corrosive marine environment.

Courtesy of Mr. FRANCISCO RANGEL , MCTI/INT

Taken by Quanta SEM microscope

Magnification: 1500X
Sample: Galvanized Sheet Steel
Detector: MIX: BSE plus SE
Voltage: 20 kV
Vacuum: 130 Pa
Horizontal Field Width: 199 μm
Working Distance: 14.9
Spot: 3.0

Hair fiber

Female hair fiber.

Courtesy of Mr. FRANCISCO RANGEL , MCTI/INT

Taken by Quanta SEM microscope

Magnification: 2,500X
Sample: Hair fiber.
Detector: MIX: SE plus BSE
Voltage: 10 kV
Vacuum: 3.98e-3 Pa
Horizontal Field Width: 19.9 μm
Working Distance: 14.9
Spot: 4.4

Sodium Phosphotungstate

Crystallized negative stain salts are usually seen as a source of artifacts, but here a certain aesthetic value was readily apparent.

Courtesy of Holger Wille

Taken by Tecnai microscope

Magnification: 25,000x
Sample: Crystallized sodium phosphotungstate
Voltage: 80 kV

Missing Pillar

selective removal of a single pillar. designed shape is 200nm x 200nm cross section with 200nm depth. etched into silicon

Courtesy of Dr. randy polson , university of utah

Taken by Helios NanoLab microscope

Magnification: 150,000
Sample: silicon
Detector: tld
Voltage: 1kv
Horizontal Field Width: 2.76um
Working Distance: 4mm
Spot: 25pa